Использование газоанализаторов для оптимизации режимов горения топлива

Г.М. Тележко, заместитель директора, Е.В.Хойна, ведущий специалист, ООО «Информаналитика», г. Санкт-Петербург

В большинстве применяемых в настоящее время устройств сжигания газового топлива оптимизация режима горения обеспечивается путем поддержания соотношения расходов газа и воздуха (давления перед горелочным устройством) в соответствии с режимной картой. Такой способ является недостаточно эффективным, он не позволяет вести учет изменения температуры и влажности воздуха, теплотворной способности и температуры газа и ряда других внешних факторов. В связи с этим, при составлении режимных карт допускают наличие значительного избытка воздуха, чтобы ни при каких условиях не допустить возникновения химнедожога. В результате в некоторых режимах количество воздуха превышает оптимальное в 1,5-2 раза, что увеличивает расход электроэнергии на дутье и приводит к необходимости нагрева избыточно подаваемого воздуха, т.е. к дополнительному расходу топлива.

Разработанные автоматические системы оптимизации соотношения «топливо-воздух», построенные с использованием стационарных газоанализаторов, ведут процесс регулирования по величине содержания кислорода в отходящих газах. На некоторых типах котлов эти системы регулирования предусмотрены проектной документацией в обязательном порядке. Однако эти системы, как правило, не работают в режиме регулирования, а газоанализатор используется в мониторинговом режиме, что обусловлено рядом причин:

концентрация кислорода в дымовых газах зависит не только от интенсивности дутья, но и от других условий эксплуатации (неконтролируемый подсос воздуха, изменение характеристик горелок в процессе эксплуатации, неидентичность горелок в многогорелочных котлах, изменение теплотворной способности топлива, колебания влажности воздуха), что, в свою очередь, снижает эффективность работы системы с регулированием по величине содержания кислорода;

ограниченное распространение контроллеров, имеющих устойчивые (надежные) алгоритмы работы с газоанализаторами (многие из разработанных алгоритмов регулирования не учитывают переходные процессы в топке при изменении мощности).

Изучение процесса горения газообразного и жидкого топлива показывает, что при недостатке кислорода проявляется резкое повышение концентрации оксида углерода (СО). Соответственно, система регулирования процесса горения, основанная на измерении концентрации СО, будет обладать более высокой чувствительностью к отклонению режима горения от оптимального. Регулирование в этом случае сводится к поддержанию режима на грани химнедожога, что позволяет учитывать изменение большинства других факторов, влияющих на качество сжигания топлива.

Применение вышеуказанного метода, до недавнего времени, сдерживалось отсутствием достаточно надежного, простого и быстрого способа измерения концентрации СО. Системы с отбором и последующим охлаждением пробы, измеряющие концентрации по поглощению в инфракрасной области спектра, либо с помощью электрохимических сенсоров, имели низкое быстродействие, были сложны в эксплуатации, требовали постоянного контроля системы удаления конденсата и пыли. Попытки использовать для измерения неравновесные электрохимические методы оказались неудачными вследствие нестабильности характеристик датчиков и невозможности исключить влияние параметров анализируемой среды (температуры, влажности, состава газа).

В последнее время были разработаны приборы с использованием твердотельных датчиков, которые способны быстро и воспроизводимо измерять содержание СО в дымовых газах и печной атмосфере. Особенностью одного из таких газоанализаторов, разработанного при участии специалистов компании «Информаналитика», является использование керамических сенсоров, определяющих содержание СО и О2 при температурах анализируемого газа до 1000°С, что позволяет использовать схему динамического отбора пробы (см. рис. 1): за счет набегающего потока отходящих газов, в скошенном оголовке трубы пробоотборного устройства возникает избыточное давление, направляющее часть анализируемого потока к сенсорам; после прохождения вблизи сенсоров эта часть потока возвращается в общий поток отходящих газов.

Рис. 1. Схема динамического отбора пробы.

 

Таблица 1. Диапазоны измерения и погрешности измерения газоанализатора.





Определяемый компонент

Диапазон измерения

Предел допускаемой основной погрешности

абсолютный

относительный

Оксид углерода (СО)

0-100 ppm

±15 ppm

-

100-1000 ppm

-

±15%

Кислород (02)

0-2%

±0,3%

-

2-25%

-

±15%

 

Использование метода динамического отбора пробы позволяет существенно упростить и снизить стоимость системы, что делает эффективным ее использование даже для энергетических установок невысокой мощности. Ограничение в использовании метода динамического отбора пробы - скорость потока, при которой обеспечивается надежная подача пробы к сенсорам. Как показал опыт, достаточной является скорость газового потока 3 м/с. Сочетание динамического отбора пробы и использование высокотемпературных сенсоров позволяет избавиться от проблем, связанных с конденсацией продуктов горения в системе отбора пробы, и, кроме того, существенно увеличивает быстродействие системы в целом.

Передача данных от первичного преобразователя к блоку индикации осуществляется при помощи интерфейса RS-485. Блок индикации позволяет считывать текущие значения концентрации СО и О2, кроме этого, он служит для формирования управляющих токовых сигналов 4-20 мА. Расстояние, на которое может быть отнесен блок индикации от места монтажа пробоотборного устройства и первичного преобразователя, достигает 500 м, а при необходимости и более, хотя такой случай представляется маловероятным. Диапазоны измерения и погрешности измерения газоанализатора приведены в табл. 1.

Измерение оксида углерода быстродействующим твердотельным датчиком является наиболее удобным методом определения химнедожога (высокое быстродействие, отсутствие необходимости обслуживания и т.п.). На графике (рис. 2) приведены результаты измерения концентрации О2 и СО при изменениях расхода (давления) воздуха на постоянной нагрузке. Исследования проводились на котле ДКВР-20/13 с использованием рассматриваемого многокомпонентного газоанализатора. Из графика видно, что на грани химнедожога малейшее (возможное для регулятора данного котла) изменение расхода воздуха приводит к резкому скачку концентрации оксида углерода. При этом содержание кислорода в отходящих газах меняется незначительно. Колебания значений концентрации СО на грани химнедожога имеют очень ярко выраженный характер и связаны как с динамикой процесса горения, так и с невозможностью тонкой регулировки подачи воздуха и нестабильностью его потока.

Появление химнедожога характеризуется резким скачком концентрации СО, что предъявляет особые требования к контроллеру и алгоритму регулирования. Для того чтобы эффективно вести процесс регулирования с различными типами регуляторов и исполнительных механизмов контроллер должен быть настроен не на поддержание определенной концентрации СО в дымоходе, а на обеспечение режима горения на грани появления химнедожога, циклически снижая расход воздуха до появления всплеска концентрации СО с последующим минимальным увеличением расхода воздуха, дабы избежать химнедожога.

В качестве примера реализации такого алгоритма можно привести работу контроллера отечественного производства в комплекте с представленным выше газоанализатором на котле ДКВР-20/13 (рис. 3). Как видно на графике, контроллер позволяет задавать скорость снижения расхода воздуха (Т2 и Т4), величину «отскока» расхода воздуха при появлении химнедожога (Т5), а также время нечувствительности (Т6), в течение которого контроллер поддерживает расход воздуха постоянным, после чего опять начинает его снижение. Обычно, весь цикл «снижение-отскок-поддержание» составляет от 2 до 5 мин и определяется пользовательскими настройками в зависимости от типа топливосжигающего агрегата.

Рис. 2. Зависимость концентрации О2 и СО от соотношения газ-воздух.

 

Рис. 3. Диаграмма изменения параметров работы котла ДКВР-20/13 при включении системы автоматического регулирования на базе контроллера «Спекон» в комплекте с газоанализатором «Ангор-С».